Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer (Auckl) ; 17: 11782234221145385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710995

RESUMO

Purpose: Breast cancer is the most diagnosed cancer and the leading cause of cancer death in women globally, and mesenchymal stem cells have been widely implicated in tumour progression. This systematic review and meta-analysis seeks to identify and summarise existing literature on the effects of human mesenchymal stem cells (hMSCs) on the migration of breast cancer cells (BCCs) in vitro, to determine the direction of this relationship according to existing research and to identify the directions for future research. Methods: A systematic literature search was conducting using a collection of databases, using the following search terms: in vitro AND mesenchymal stem cells AND breast cancer. Only studies that investigated the effects of human, unmodified MSCs on the migration of human, unmodified BCCs in vitro were included. Standardised mean differences (SMDs) were calculated to determine pooled effect sizes. Results: This meta-analysis demonstrates that hMSCs (different sources combined) increase the migration of both MDA-MB-231 and MCF-7 cell lines in vitro (SMD = 1.84, P = .03 and SMD = 2.69, P < .00001, respectively). Importantly, the individual effects of hMSCs from different sources were also analysed and demonstrated that MSCs derived from human adipose tissue increase BCC migration (SMD = 1.34, P = .0002) and those derived from umbilical cord increased both MDA-MB-231 and MCF-7 migration (SMD = 3.93, P < .00001 and SMD = 3.01, P < .00001, respectively). Conclusions: To our knowledge, this is the first systematic review and meta-analysis investigating and summarising the effects of hMSCs from different sources on the migration of BCCs, in vitro.

2.
Sci Rep ; 12(1): 3504, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241723

RESUMO

Breast cancer is a persisting global burden for health services with cases and deaths projected to rise in future years. Surgery complemented by adjuvant therapy is commonly used to treat breast cancer, however comes with detrimental side effects to physical fitness and mental wellbeing. The aim of this systematic review and meta-analysis is to determine whether resistance and endurance interventions performed during adjuvant treatment can lastingly ameliorate these side effects. A systematic literature search was performed in various electronic databases. Papers were assessed for bias and grouped based on intervention design. RStudio was used to perform the meta-analyses for each group using the 'meta' package. Publication bias and power analyses were also conducted. These methods conform to PRISMA guidelines. Combined resistance and endurance interventions elicited significant long-lasting improvements in global fatigue and were beneficial to the remaining side effects. Individually, resistance and endurance interventions non-significantly improved these side effects. Resistance interventions elicited higher benefits overall. Exercise interventions have lasting clinical benefits in ameliorating adjuvant therapy side effects, which negatively impact physical fitness and mental wellbeing. These interventions are of clinical value to enhance adherence rates and avoid comorbidities such as sarcopenia, thus improving disease prognosis.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/terapia , Terapia por Exercício , Fadiga/terapia , Feminino , Humanos , Resistência Física , Aptidão Física , Prognóstico , Qualidade de Vida
3.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451446

RESUMO

Latent membrane protein 1 (LMP1), the major oncoprotein encoded by Epstein-Barr virus (EBV), is expressed at widely variable levels in undifferentiated nasopharyngeal carcinoma (NPC) biopsies, fueling intense debate in the field as to the importance of this oncogenic protein in disease pathogenesis. LMP1-positive NPCs are reportedly more aggressive, and in a similar vein, the presence of cancer-associated fibroblasts (CAFs) surrounding "nests" of tumour cells in NPC serve as indicators of poor prognosis. However, there is currently no evidence linking LMP1 expression and the presence of CAFs in NPC. In this study, we demonstrate the ability of LMP1 to recruit fibroblasts in vitro in an ERK-MAPK-dependent mechanism, along with enhanced viability, invasiveness and transformation to a myofibroblast-like phenotype. Taken together, these findings support a putative role for LMP1 in recruiting CAFs to the tumour microenvironment in NPC, ultimately contributing to metastatic disease.

4.
Am J Physiol Cell Physiol ; 320(3): C253-C263, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356943

RESUMO

Breast cancer is the most prevalent cancer in women worldwide. In the United Kingdom, approximately 5% of all breast cancers are already metastatic at the time of diagnosis. An abundance of literature shows that exercise can have beneficial effects on the outcome and prognosis of breast cancer patients, yet the molecular mechanisms remain poorly understood. There are several in vitro models that aim to recapitulate the response of breast cancer to exercise in vivo; this systematic review and meta-analysis summarizes the existing literature. The following search terms were used to conduct a systematic literature search using a collection of databases (last search performed May 2020): "in vitro," "exercise," and "breast cancer." Only studies that investigated the effects of exercise on breast cancer in vitro were included. Standardized mean differences (SMD) were calculated to determine pooled effect sizes. This meta-analysis has successfully demonstrated that various identified exercise interventions on breast cancer cells in vitro significantly reduced breast cancer cell viability, proliferation, and tumorigenic potential (SMD = -1.76, P = 0.004, SMD = -2.85, P = 0.003, and SMD = -3.15, P = 0.0008, respectively). A clear direction of effect was found with exercise on breast cancer cell migration in vitro, however this effect was not significant (SMD = -0.62, P = 0.317). To our knowledge, this is the first meta-analysis and systematic review investigating and summarizing literature on exercise and breast cancer in vitro, highlighting models used and priority areas for future research focus.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Exercício Físico/fisiologia , Animais , Mama/patologia , Mama/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos
5.
Pathogens ; 9(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861782

RESUMO

Undifferentiated nasopharyngeal carcinoma (NPC) is 100% associated with Epstein-Barr virus (EBV) infection, and biopsies display variable levels of expression of the viral oncoprotein, latent membrane protein 1 (LMP1). Emerging evidence suggests an important role for cancer-associated fibroblasts (CAFs) in the NPC tumour microenvironment, yet the interaction between the virus, its latent gene products and the recruitment and activation of CAFs in the NPC tumour stroma remains unclear. This short review will discuss the current evidence for the importance of CAFs in NPC pathogenesis and outline a putative role for the EBV-encoded oncoprotein, LMP1, in governing tumour-stromal interactions.

6.
Bioengineering (Basel) ; 6(4)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683821

RESUMO

Mesenchymal stem cells have been widely implicated in tumour development and metastases. Moving from the use of two-dimensional (2D) models to three-dimensional (3D) to investigate this relationship is critical to facilitate more applicable and relevant research on the tumour microenvironment. We investigated the effects of altering glucose concentration and the source of foetal bovine serum (FBS) on the growth of two breast cancer cell lines (T47D and MDA-MB-231) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) to determine successful conditions to enable their co-culture in 3D tumour spheroid models. Subsequently, these 3D multi-cellular tumour spheroids were used to investigate the effect of hBM-MSCs on breast cancer cell invasiveness. Findings presented herein show that serum source had a statistically significant effect on two thirds of the growth parameters measured across all three cell lines, whereas glucose only had a statistically significant effect on 6%. It was determined that the optimum growth media composition for the co-culture of 3D hBM-MSCs and breast cancer cell line spheroids was 1 g/L glucose DMEM supplemented with 10% FBS from source A. Subsequent results demonstrated that co-culture of hBM-MSCs and MDA-MB-231 cells dramatically reduced invasiveness of both cell lines (F(1,4) = 71.465, p = 0.001) when embedded into a matrix comprising of growth-factor reduced base membrane extract (BME) and collagen.

7.
Cancers (Basel) ; 10(5)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723998

RESUMO

The Epstein⁻Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) oncogene can induce profound effects on epithelial growth and differentiation including many of the features of the epithelial-to-mesenchymal transition (EMT). To better characterise these effects, we used the well-defined Madin Darby Canine Kidney (MDCK) epithelial cell model and found that LMP1 expression in these cells induces EMT as defined by characteristic morphological changes accompanied by loss of E-cadherin, desmosomal cadherin and tight junction protein expression. The induction of the EMT phenotype required a functional CTAR1 domain of LMP1 and studies using pharmacological inhibitors revealed contributions from signalling pathways commonly induced by integrin⁻ligand interactions: extracellular signal-regulated kinases/mitogen-activated protein kinases (ERK-MAPK), PI3-Kinase and tyrosine kinases, but not transforming growth factor beta (TGFβ). More detailed analysis implicated the CTAR1-mediated induction of Slug and Twist in LMP1-induced EMT. A key role for β1 integrin signalling in LMP1-mediated ERK-MAPK and focal adhesion kianse (FAK) phosphorylation was observed, and β1 integrin activation was found to enhance LMP1-induced cell viability and survival. These findings support an important role for LMP1 in disease pathogenesis through transcriptional reprogramming that enhances tumour cell survival and leads to a more invasive, metastatic phenotype.

8.
Sci Rep ; 6: 19533, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782058

RESUMO

Approximately 20% of global cancer incidence is causally linked to an infectious agent. Epstein-Barr virus (EBV) accounts for around 1% of all virus-associated cancers and is associated with nasopharyngeal carcinoma (NPC). Latent membrane protein 1 (LMP1), the major oncoprotein encoded by EBV, behaves as a constitutively active tumour necrosis factor (TNF) receptor activating a variety of signalling pathways, including the three classic MAPKs (ERK-MAPK, p38 MAPK and JNK/SAPK). The present study identifies novel signalling properties for this integral membrane protein via the induction and secretion of activin A and TGFß1, which are both required for LMP1's ability to induce the expression of the extracellular matrix protein, fibronectin. However, it is evident that LMP1 is unable to activate the classic Smad-dependent TGFß signalling pathway, but rather elicits its effects through the non-Smad arm of TGFß signalling. In addition, there is a requirement for JNK/SAPK signalling in LMP1-mediated fibronectin induction. LMP1 also induces the expression and activation of the major fibronectin receptor, α5ß1 integrin, an effect that is accompanied by increased focal adhesion formation and turnover. Taken together, these findings support the putative role for LMP1 in the pathogenesis of NPC by contributing to the metastatic potential of epithelial cells.


Assuntos
Ativinas/metabolismo , Adesão Celular/fisiologia , Herpesvirus Humano 4/metabolismo , Integrina beta1/metabolismo , Proteínas Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Viral/metabolismo , Carcinoma , Linhagem Celular , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/virologia , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/virologia , Transdução de Sinais/fisiologia
9.
Future Oncol ; 5(6): 811-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19663731

RESUMO

Although frequently expressed in Epstein-Barr virus (EBV)-positive malignancies, the contribution of the oncogenic latent membrane protein-1 (LMP1) to the pathogenesis of nasopharyngeal carcinoma remains to be fully defined. As a key effector in EBV-driven B-cell transformation in vitro, LMP1 also displays oncogenic properties in rodent fibroblasts, and exhibits similar effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a plethora of signaling pathways including: NF-kappaB, JNK/p38 (SAPK), PI3-kinase and ERK-MPK. The constitutive activation of these pathways appears central in the ability of LMP1 to induce multiple morphological and phenotypic alterations. Here we review the effects of LMP1 on epithelial cell growth transformation, and its putative role in the pathogenesis of nasopharyngeal carcinoma, focusing on key areas of proliferation, survival, cell motility and invasion.


Assuntos
Carcinoma/patologia , Neoplasias Nasofaríngeas/patologia , Proteínas da Matriz Viral/metabolismo , Carcinoma/fisiopatologia , Proliferação de Células , Humanos , Neoplasias Nasofaríngeas/fisiopatologia , Fator 2 Associado a Receptor de TNF/metabolismo
10.
J Gen Virol ; 89(Pt 11): 2806-2820, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18931079

RESUMO

SCC12F cells are a line of keratinocytes that retain the capacity for terminal differentiation in vitro. We showed previously that the Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein 1 (LMP1) altered SCC12F morphology in vitro, downregulated cell-cell-adhesion molecule expression and promoted cell motility. In organotypic raft culture, LMP1-expressing cells failed to stratify and formed poorly organized structures which displayed impaired terminal differentiation. To understand better the mechanism(s) by which LMP1 induces these effects, we generated SCC12F cells in which LMP1 expression is inducible. Following induction, these cells exhibited phenotypic changes similar to those observed previously and allowed us to investigate the effects of LMP1 expression on cellular pathways associated with growth, differentiation and morphology. Using microarrays and a number of confirmatory techniques, we identified sets of differentially expressed genes that are characteristically expressed in inflammatory and hyperproliferative epidermis, including chemokines, cytokines and their receptors, growth factors involved in promoting epithelial cell motility and proliferation and signalling molecules that regulate actin filament reorganization and cell movement. Among the genes whose expression was differentially induced significantly by LMP1, the induction of IL-1beta and IL-1alpha was of particular interest, as many of the LMP1-regulated genes identified are established targets of these cytokines. Our findings suggest that alterations in the IL-1 signalling network may be responsible for many of the changes in host-cell gene expression induced in response to LMP1. Identification of these LMP1-regulated genes helps to define the mechanism(s) by which this oncoprotein influences cellular pathways that regulate terminal differentiation, cell motility and inflammation.


Assuntos
Herpesvirus Humano 4/patogenicidade , Queratinócitos/fisiologia , Proteínas da Matriz Viral/efeitos adversos , Anticorpos Antivirais , Diferenciação Celular , Divisão Celular/genética , Linhagem Celular , Movimento Celular , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Queratinócitos/patologia , Hibridização de Ácido Nucleico , RNA Viral/genética , RNA Viral/isolamento & purificação , Ferimentos e Lesões/virologia
11.
Eur J Cell Biol ; 87(8-9): 677-97, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18468721

RESUMO

Approximately 15-20% of global cancer incidence is causally linked to viral infection, yet the low incidence of cancers in healthy infected individuals suggests that malignant conversion of virus-infected cells occurs after a long period as a result of additional genetic modifications. There are four families of viruses that are now documented to be involved in the development of human cancers which include members of the polyomavirus, hepadnavirus, papillomavirus and herpesvirus families. Although a number of these viruses are implicated in the aetiology of lymphomas or leukaemias, the vast majority are associated with malignancies of epithelial cells. In epithelial tissues, several classes of proteins are involved in maintaining tissue architecture, including those that promote cell-cell adhesion, and others, which mediate cell-matrix interactions. Proteins representative of all classes are frequently altered in malignant tumour cells that possess invasive and metastatic properties. Malignant tumour cells acquire mechanisms to degrade basement membranes and invade the underlying tissue. Many viruses encode proteins which engage signalling pathways that affect one or more of these mechanisms. It is believed that activation of these processes by chronic viral infection can, under certain circumstances, promote tumour cell invasion and metastasis. This review will take a brief look at the current knowledge of viral-induced alterations in cell motility and invasiveness in the context of tumour invasion and metastasis.


Assuntos
Movimento Celular/fisiologia , Vírus de DNA Tumorais/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/virologia , Animais , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Vírus da Hepatite B/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
12.
J Virol ; 82(7): 3654-64, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18199641

RESUMO

The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is an oncogenic protein which has previously been shown to engage the NF-kappaB, stress-activated MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and extracellular-regulated kinase (ERK)-MAPK pathways. In this study, we demonstrate that LMP1 activates ERK-MAPK in epithelial cells via the canonical Raf-MEK-ERK-MAPK pathway but in a Ras-independent manner. In agreement with the results of a previous study (B. A. Mainou, D. N. Everly, Jr., and N. Raab-Traub, J. Virol. 81:9680-9692, 2007), we show that the ability of LMP1 to activate ERK-MAPK mapped to its CTAR1 domain, the TRAF binding domain previously implicated in PI 3-kinase activation. A role for ERK-MAPK in LMP1-induced epithelial cell motility was identified, as LMP1-expressing cells displayed increased rates of haptotactic migration compared to those of LMP1-negative cells. These data implicate the ERK-MAPK pathway in LMP1-induced effects associated with transformation, suggesting that this pathway may contribute to the oncogenicity of LMP1 through its ability to promote cell motility and to enhance the invasive properties of epithelial cells.


Assuntos
Movimento Celular , Transformação Celular Viral , Células Epiteliais/virologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas da Matriz Viral/fisiologia , Linhagem Celular , Herpesvirus Humano 4/genética , Humanos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...